
On Dynamic Link Inference in Heterogeneous Networks

Charu Aggarwal∗ Yan Xie† Philip S. Yu‡

Abstract

Network and linked data have become quite prevalent in re-
cent years because of the ubiquity of the web and social
media applications, which are inherently network oriented.
Such networks are massive, dynamic, contain a lot of con-
tent, and may evolve over time in terms of the underlying
structure. In this paper, we will study the problem of dy-
namic link inference in temporal and heterogeneous infor-
mation networks. The problem of dynamic link inference
is extremely challenging in massive and heterogeneous in-
formation network because of the challenges associated with
the dynamic nature of the network, and the different types
of nodes and attributes in it. Both the topology and type in-
formation need to be used effectively for the link inference
process. We propose an effective two-level scheme which
makes efficient macro- and micro-decisions for combining
structure and content in a dynamic and time-sensitive way.
The time-sensitive nature of the links is leveraged in order to
perform effective link prediction. We illustrate the effective-
ness of our technique over a number of real data sets.

1 Introduction

In recent years, many forms of networked social media such
as Facebook and Flickr have been rapidly burgeoning in
terms of their membership and popularity. Many such social
and media networks may contain different kinds of attributes
such as text, tags or other meta-data, and may rapidly
evolve over time. For example, the web, blog networks
and social networks are dynamically interconnected with one
another, and may continually experience a change in the
node and linkage structure of the network. Such dynamic
and heterogeneously connected entities are referred to as
information networks. This has lead to a tremendous interest
in the field of managing and mining such dynamic and
heterogeneous information networks [14].

In many networks, the linkages are inherently dynamic,
and continuously arrive over time. This results in a gradual
change on the network structure over time. For example,
in a social network, new linkages are continuously created
over time. This often results in gradual densification of the
underlying social network graph. In such cases, it may be

∗IBM T.J. Watson Research Center, Email: charu@ibm.com
†University of Illinois at Chicago, Email: yxie8@uic.edu
‡University of Illinois at Chicago, Email: psyu@cs.uic.edu

desirable to predict future linkages between the entities. The
derivation of links between entities is an extremely important
problem from the perspective of a number of different social
networking applications. This has lead to increasing interest
in the problem of automated inference of the links in social
networks [2, 3, 5, 19, 12, 20, 15, 8]. However, most
of the known techniques are designed for homogeneous
networks which are static in nature. On the other hand,
our techniques will be focusing on dynamic and evolving
networks, which contain a combination of different kinds of
heterogeneous content and links. More specifically, many
of the previously designed techniques for link prediction are
not easily applicable to information networks because of the
following reasons:
• Most of the available work on link inference is designed
for the case of static network data sets, in which the network
structure does not change significantly over time. In static
cases, it is much easier to design models, since they do
not need to be constructed in an incremental way, and the
link prediction model can be constructed with the use of a
multi-pass pre-processing approach. In this paper, we will
examine a dynamic evolving scenario in which new links are
continuously added and old links may also re-appear over
time. For example, a friendship link is a static link, whereas
a message sent between two participants is a dynamic link
which could recur over time. In many applications, it is
useful to be able to predict the most likely links at any given
time. Our methods are designed for very large networks,
which are not only dynamic, but also contain a very large
number of nodes. For example, for a network containing 10 7

nodes, the number of possible pairs of nodes is of the order of
1014. This creates a challenge for predicting the most likely
pairs of nodes between which links exist. The challenge is
especially great when the link-prediction model needs to be
constructed in a dynamic way.
• Current techniques are often designed for homogeneous
networks, which are based either purely on structure [15],
or on attributes which are all of the same type [19]. On the
other hand, in truly heterogeneous networks, both the nodes
and the links can be of different types. These techniques are
not very effective for cases in which nodes have a very large
number of different types with practically arbitrary content
structure in different types. For example, in a heterogeneous
information network, the nodes may be of different types
such as author, conference, or paper. Each of these different

753 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

415 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

types may have different kinds of content or attributes. Thus,
our model is very flexible, and can apply to practically any
kind of dynamic and content-based network.

The dynamic nature of the network implies that new
links are constantly being added to the network. Such new
links may also arrive in the context of new nodes being
added to the network, or they may correspond to edges
between already existing nodes. In some cases, an entire set
of nodes together with its associated links may be received
by the network, whereas in others, only individual edges or
nodes may be received. Both the two scenarios are not very
different from a conceptual point of view, because they can
both be modeled with the scenario that a single node together
with its links is received. Therefore, all future discussions in
this paper will focus on this scenario. One challenge with
the dynamic approach is that the structure of the network
may evolve over time. This may affect our ability to perform
effective link prediction.

In order to achieve these goals, we will use a dynamic
graph-clustering approach in which fine-grained clusters are
constantly maintained in the network. These clusters are
created on the basis of structural similarity. The goal of
the clustering process is to create a dynamic summarization
which can be efficiently used for dynamic inferences in a
very large network. The higher level of macro-processing di-
vides the network into regions of high density in which more
fine-grained decisions with the use of types and contents
can be made. This structural behavior is used for macro-
decisions, whereas both structural and attribute behavior is
used for micro-decisions of deciding where the links should
be placed. Thus, the link inference decisions are made with
the use of a combination of content and links, within a par-
ticular structural locality of the network. We will show that
such a local approach, which combines the content and struc-
tural information in a careful way, is very useful for the case
of content-rich and heterogeneous information networks. We
will refer to our algorithm as DYNALINK which corresponds
to the fact that it is as Dynamic and Heterogeneous Content-
based Link Prediction Algorithm.

This paper is organized as follows. The remainder of
this section discusses related work and contributions. In
section 2, we will discuss how to leverage the statistics
for the problem of link-prediction. Section 3 will study
a number of experimental results. Section 4 contains the
conclusions and summary.

1.1 Related Work and Contributions The problem of
link prediction has been studied extensively in the data
mining and machine learning community [7]. Much of
the work on this problem is based on defining proximity-
based measures on the nodes in the underlying network
[1, 15, 16]. The work in [15] studied the usefulness of
different topological features for link prediction. It was

discovered in [5] that none of the features was particularly
dominant in different kinds of situations. A second approach
is to study the problem in the context of statistical relational
models [6, 9, 10, 11, 21]. However, these methods are
restricted to relational models, and are not designed for
dynamic networks, or cannot handle attributes of a relational
nature. Recently, the problem of link prediction has also
been studied in the context of wikipedia and web data [2, 22].

The link prediction problem has also been studied more
generally in the context of the classification problem [5, 12,
20], since the link prediction problem can be considered as
a classification problem in which features and class labels
(corresponding to existence or absence of links) can be as-
sociated with links to be predicted. While some work has
focussed recently on some aspects of the heterogeneous sce-
nario [17, 18], previous work has not been designed for mas-
sive, heterogeneous and dynamic networks, in which the con-
tent in different nodes can take on almost any free form.
The paper is particularly unique in its approach to dynamic
heterogeneous networks by using a dynamic network clus-
tering approach which combines local content predictability
with temporal decay-based structural probability. This paper
takes a unique approach towards such large scale networks
by using topological behavior for higher-level decisions by
using them in the clustering process, and the attribute behav-
ior for more fine grained decisions.

1.2 Link Inference: Problem Definition In this section,
we will define the link inference problem for information
networks. We assume that each node has a type associated
with it. This type may be quite different depending upon
the kind of network. For example, in a paper-authorship net-
work, this type could correspond to paper, author, confer-
ence, or other corresponding entity. In a movie database, the
type could correspond to actor, movie or genre. The links
between the different entities represent the nature of the re-
lationships among them. These links could be of different
types depending upon the nature of the underlying relation-
ships. For example, a link could be a “co-authorship” rela-
tionship between two author nodes, or it could be an “au-
thorship” relationship between an author node and a paper
node.

Many of the applications which generate such networks
are inherently dynamic. For example, co-authorship net-
works, or military information networks are inherently dy-
namic in nature. Therefore, it may be assumed that new
nodes or edges are constantly being added to the network,
and similarly new nodes or edges are constantly being
deleted. In our paper, we assume that each incoming entity
may be a set of nodes together with the edge relationships
between them. Furthermore, some of the incoming nodes
may never have been encountered before. For example, in a
co-authorship network, new authors and papers are continu-

754 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

416 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ously being added to the network.
We assume that a node of type r has dr different

attributes. The type of the node is itself one of these dr

attributes. These values are assumed to be discrete, though
numerical values can also be converted to discrete values
with the use of a discretization process. We note that there
may be nodes of q different types which are denoted by
{1 . . . q}. These values are thus the relational attributes,
which represent the properties of the different nodes. Thus,
for a node i with type ti, these values are denoted by
xi
1 . . . x

i
dti

respectively. These values can often be helpful
in link inference, because the correlations in the values
across the different nodes can be used for the inference
process. We also assume that the domain of values for
different attributes is distinct. This assumption is without
loss of generality, because we can use a transformation in
order to ensure that the values are distinct. Specifically, we
can concatenate the following strings, in order to create the
following new attribute-value string: (a) A string containing
the attribute name, (b) the symbol “#”, and (c) the attribute
value itself. For example, consider the case when attribute
3 of an author-type node is a keyword, for which one of the
possible values is “clustering”, and attribute 2 of a paper-
type node is also a keyword, for which one of the possible
values is “clustering”. Then, both values are represented as
“clustering#keyword”. However, if we track demographic
attributes, one of which is gender, then the value of the
attributes in a node corresponding to a female would be
the value “gender#female”. We denote the entire domain of
distinct values across all attributes and node types by D. We
assume that D is the index of L distinct values, which are
denoted by D = {1 . . . L}. The distinctness of the content
values at different nodes ensures that the attribute values at
each node can be generally treated as a bag of values at
each node. This is essentially the same as a vector-space
representation of text data. In fact, the techniques of this
paper are easily generalized to the case in which each node-
type contains text content as opposed to a fixed set of discrete
attributes for each node type.

In addition, for any pair of nodes i and j, a link (i, j)
may exist, and the type of the corresponding link is denoted
by P (i, j). The type of the corresponding link is drawn from
{1 . . . p}. Different kinds of queries can be formulated in the
context of this problem. These are as follows:
(a) For a given pair of nodes, predict the relative importance
of a link arriving between them in the future.
(b) For a given node, determine the links of a particular
type which are most likely to emanate from that node in the
future.
(c) Predict all the links of a particular type in the network in
the future.
We note that all these queries need to be resolved in a
dynamic way which takes into account the evolving structure

and content of the network.

2 Link Inference: The Dynamic Network Clustering
Approach

One of the key challenges in link inference in heterogeneous
information networks is that the link-prediction process re-
quires the use of both linkage and attribute information. Fur-
thermore, the dynamic nature of the network makes the pre-
diction process even more challenging. One observation in
[15] is that the topological linkage structure can be lever-
aged quite effectively for link prediction. However, in many
cases, the attributes may also contain valuable information
for the link prediction process. However, the attribute infor-
mation can often be sensitive to a particular locality of the
network. For example, in a bibliographic information net-
work, the keyword attribute corresponding to the word “net-
work” may not be very discriminative within the node clus-
ter corresponding to the networking area, but may be quite
discriminative within the database or data mining commu-
nity. Therefore, the link-prediction process can be greatly
enhanced with the use of local and context-sensitive informa-
tion within a particular topological region. In order to lever-
age the content information in a more discriminative way, we
will use a carefully designed approach which is dynamic and
properly accounts for the local structural and content infor-
mation during link prediction. We use the following broad
approach:

• The clustering process is used in order to segment the
network into different local regions. Each region is
densely populated, and is more likely to contain a larger
portion of the links. Furthermore, each local region is
likely to provide context-specific linkage behavior of
the different attributes.

• We use the clustered network in conjunction with the
relational attributes at different nodes in order to design
rules which relate the attribute combinations as well
as the local linkage structure to predict the likelihood
that a link will arrive in the future between a pair of
nodes. Since the network is already clustered, the
model for the relational attributes is based on the dense
linkage structure within a particular region. This is
likely to make the model much more robust, because
it is based on the local characteristics of the network
within a particular region. This sharpens and magnifies
the accuracy of the approach.

In addition to the locality-specific advantages of the class
discrimination behavior, the clustering process also helps in
segmenting the network into regions of much more manage-
able size. This is essential in a very large information net-
work in which the number of nodes is very large, and there
may be too many attribute values to process on a global ba-
sis. On the other hand, the set of relevant attribute values

755 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

417 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

within a particular local region may be much more concise.
This greatly helps in magnifying the link predictability prop-
erties. Once it is known that most of the edges in the network
lie within these clustered regions, we can further use the in-
formation in the relational attributes in order to make more
nuanced predictions on the linkages. The implicit effect of
using this two-stage process is to use global linkage skews
in order to make the macro-decisions of where most of the
links are located, and then the local correlations among the
attributes in the individual node types for the micro-decisions
for picking the exact pairs of nodes at which to place these
links. Therefore, we will describe the overall approach for
link prediction by describing the following in the next sub-
sections: (a) We will describe the methodology for creat-
ing the clusters as well as the maintenance of corresponding
summary statistics. A proper choice of summary statistics is
critical for an effective link prediction process. Therefore,
we will first describe the summary statistics. (b) In a later
subsection, we will describe how to use these clusters and
the associated statistics for link prediction. The described
techniques use the summary statistics for the link prediction
process.

2.1 Cluster Summary Statistics The main idea is to cre-
ate a compact characterization of the linkage behavior which
is local to each cluster. The compactness of the characteriza-
tion is useful in ensuring an efficient link-prediction process.
We assume that each cluster consists of a set of nodes C,
which are densely connected to one another with the use of
links of different types. The summary statistics which are
stored with the clusters are as follows:

• We compute the frequency f(m, C) of the attribute
value m ∈ D over the cluster C. Therefore f(m, C) is
the number of nodes of cluster C in which the attribute
value m is present.

• We maintain the number of links of each type such that
both of its end points lie in the cluster C. The number of
such links of type k in cluster C is denoted by B(k, C).

• For all links (i, j) of type k for which both ends lie in
the cluster C, we compute the number of occurrences
of each attribute value m ∈ D which are present at the
source of the link. If multiple links of type k emanate
from i, then the corresponding link is also counted
multiple times. This value is aggregated over all nodes
i in the cluster. This is the origination frequency of
attribute value m ∈ D for links of type k, and is denoted
by O(m, k, C).

• For all links (i, j) of type k for which both ends lie in
the cluster C, we compute the number of occurrences
of each attribute value m ∈ D which are present at
the destination of the link. If multiple links of type

k are incident to j, then the corresponding link is
also counted multiple times. This value is aggregated
over all nodes j in the cluster. This is the destination
frequency of attribute value m ∈ D for links of type k,
and is denoted by E(m, k, C).

• For all links (i, j) of type k for which both ends lie in
the cluster C, we compute the number of occurrences of
the attribute pair m1 ∈ D and m2 ∈ D, such that m1

occurs at i and m2 occurs at j. This value is denoted by
I(m1,m2, k, C).

• In addition, the similarity in attribute values across links
can also be an indicator of linkage behavior. Therefore,
for each attribute value m, we compute the number
Qn(m, k, C) of links of type k which have the attribute
value m at both ends within cluster C.

We note that all of the above statistics are based on attribute
and link behavior, which are local to a particular cluster.
We also maintain global statistics which are true across the
different clusters. The main difference is that these statistics
are maintained at the global level, rather than simply about
the local behavior of particular clusters. These statistics are
useful for making predictive decisions about the links, when
the end points may lie in different clusters. We track the
following analogous statistics:

• The number of nodes at which the attribute m occurs
globally is denoted by h(m).

• The number of links of type k in the entire network is
denoted by A(k).

• For all links (i, j) of type k in the network, we compute
the number of occurrences of each attribute value m ∈
D which are present at the source of the link. If multiple
links of type k emanate from i, then the corresponding
link is also counted multiple times. This value is
aggregated over all nodes i in the network. This is the
origination frequency of attribute valuem ∈ D for links
of type k, and is denoted by OG(m, k).

• For all links (i, j) of type k in the network, we compute
the number of occurrences of each attribute value m ∈
D which are present at the destination of the link. If
multiple links of type k are incident to j, then the
corresponding link is also counted multiple times. This
value is aggregated over all nodes j in the network. This
is the destination frequency of attribute value m ∈ D
for links of type k, and is denoted by EG(m, k).

• For all links (i, j) of type k for which the source i and
destination j lie in different clusters, we compute the
number of occurrences of the attribute pair m1 ∈ D
and m2 ∈ D, such that m1 occurs at i and m2 occurs at
j. This value is denoted by J(m1,m2, k).

756 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

418 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Algorithm MaintainCluster(Incoming Graph Object: O);
begin

for each new node in object O assign it to cluster
which results in the least number of new
inter-cluster links;
Sort other nodes in O in random
order and check if re-assignment
improves objective function;
Update cluster link statistics;

end

Figure 1: Incremental Clustering Process

• For each attribute value m, we compute the number
Pn(m, k) of links of type k which have the same
attribute value m at both ends.

We will use these summary statistics in conjunction with the
clustering process in order to accomplish the link prediction
process. We note that these statistics are maintained dynam-
ically along with the clusters. In the next section, we will
discuss the process of dynamic cluster maintenance.

2.2 Dynamic Cluster and Statistics Maintenance In this
section, we will propose techniques for dynamic cluster
maintenance with a focus on link prediction. The clustering
process partitions the node set N into a group of clusters,
C1, C2 . . . Cr. Since the link inference method of this paper
is designed for dynamic information networks, the clustering
process needs to be dynamic as well. As an initialization
step, we start off with the initial state of the information
network clusters which are derived with the use of any of the
standard node clustering algorithms [4]. For the purpose of
this paper, we will use a simple graph partitioning algorithm
which divides nodes into r partitions, so as to minimize
the number of inter-partition edges. A classic example of
this is the Kernighan-Lin algorithm [4]. Subsequently, we
need a method to maintain both the clustering structure and
the link statistics in the presence of dynamic changes of
the information network. We assume that this dynamic
nature of the information network is reflected by incoming
graph objects, each of which may have a set of nodes and
links. For example, in a co-authorship network, each object
may correspond to a research paper, in which the nodes are
papers, authors, or conferences. The links may represent an
authorship relationship, or paper-conference relationships.
It is possible that some of these nodes may not currently
be present in the information network at all. For example,
when a paper is written by an author who has not published
before, this corresponds to a completely new node. We
note that the incoming graph objects may not immediately
affect the clustering structure of the underlying nodes, which
are already present in the network. However, the addition
of such objects may result in the movement of nodes from

one partition to the other and vice-versa. Such changes
may happen over time, when the structure of the network
changes. While the network structure may be very large, its
detailed structure needs to be tracked during the clustering
process. Specifically, we need to maintain information about
the nodes, their attribute values and their adjacent nodes. For
this purpose, the adjacency list representation can be used
very efficiently.

We dynamically maintain the sets of clusters C1 . . .Cr.
When a new graph Gr arrives, its nodes (which are already
present in the information network) are assumed to belong
to the corresponding clusters. The new nodes are greed-
ily assigned to the clusters which result in the least number
of links across the different clusters. After this assignment
process, we update the inter-cluster and intra-cluster link
based statistics in the previous section. In many instances,
it may be the case that the network structure changes over
time, and therefore the assignment of nodes to clusters may
change as well. For this, we only check the nodes involved
in the current object to be re-assigned. For each node in
the current object, we sort them in random order, and check
if a re-assignment to any of the other clusters reduces the
number of links across the different clusters. If such is the
case, then the re-assignment is performed. We note that this
step may also result in adjustment of inter-cluster and intra-
cluster statistics. It is fairly straightforward to update these
summary statistics by using the disk-resident representation
to examine the node attributes and its outgoing links on disk.
The re-assignment of clusters changes the links within the
clusters as well as the links across the clusters. Correspond-
ingly, the statistics are also modified in order to reflect this
re-adjustment. The overall update process for an incoming
object is illustrated in Figure 1.

2.3 Computing Content Predictability In this section,
we will discuss how to leverage the statistics collected in the
afore-mentioned sections for the purpose of link-prediction.
In order to achieve this goal, we will first construct rules
which relate the attribute values at the source and destination
of the link to the probability of link prediction. For this
purpose, the summary statistics maintained in each cluster
are very useful. Therefore, we define the concept of local
predictability of links with respect to particular attribute
pairs.

DEFINITION 1. (LOCAL PREDICTABILITY) The local pre-
dictability S(m1,m2, k, C) of attribute-pair (m1,m2) and
link-type k with respect to the cluster C is the probability that
for a given node-pair (i, j) completely contained within clus-
ter C, the link (i, j) of type k exists, conditional on the fact
that node i contains attribute-value m1 and node j contains
attribute-value m2. This local predictability is estimated as
a weighted average of four quantities, for weights α1 . . . α4,

757 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

419 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

which satisfy
∑4

i=1 αi = 1:

S(m1,m2, k, C) = α1 · O(m1, k, C)
f(m1, C) · |C| + α2 · E(m2, k, C)

f(m2, C) · |C|
+α3 · I(m1,m2, k, C)

f(m1, C) · f(m2, C) + α4 · B(k, C)
|C|2

We note that the weights α1 . . . α4 can be learned by testing
over a grid of values and picking the optimum combination
on a small hold our portion of the training data. In the event
that any of the fractions above is indeterminate1, we exclude
that term from the computation.

Each of these terms corresponds to a different way of using
the attribute structure in order to estimate the local link
probability. A detailed explanation for each of these terms
is as follows:

• The first fraction O(m1,k,C)
f(m1,C) performs the estimation by

analyzing the behavior of the links which emanate from
a node containing a particular attribute type.

• The second fraction performs the estimation by analyz-
ing the behavior of the links which are incident on a
node containing a particular attribute type.

• The third fraction uses both the source and destination
behavior of a particular node.

• The last fraction uses only the frequency behavior of the
links in the cluster and does not use attribute structure
at all. This is useful in cases, where much information
about the behavior of a particular kind of link may not
be available.

A similar concept can be defined in terms of the global
predictability G(m1,m2, k) of the attribute-pair (m1,m2),
with respect to link type k.

DEFINITION 2. (GLOBAL PREDICTABILITY) The global
predictability G(m1,m2, k) of attribute-pair (m1,m2) and
link-type k is the probability that for a given node-pair (i, j),
the link (i, j) of type k exists, conditional on the fact node i
contains attribute-value m1 and node j contains attribute-
value m2. Let N be the total number of nodes in the network
currently. This probability is estimated as a weighted aver-
age of four fractions, with weights β1 . . . β4, which satisfy∑4

i=1 βi = 1:

G(m1,m2, k) = β1 · OG(m1, k)

h(m1) ·N + β2 · EG(m2, k)

h(m2) ·N +

+β3 · J(m1,m2, k)

h(m1) · h(m2)
+ β4 · A(k)

N2

1This refers to the fact that the numerator and the denominator of the
fraction may be 0.

As in the previous case, the values of β1 . . . β4 can be learned
by testing over a grid of values and picking the optimum
combination. Note that the global-predictability is useful in
capturing the behavior of those links for which the end points
do not lie in the same cluster. The concept of predictability
essentially defines rules for the link-prediction process.

Therefore, the first step is to determine the values of
S(m1,m2, k, C) and G(m1,m2, k), for each attribute-value
pair (m1,m2), and sort them in descending order. Note that
this is done offline periodically in the case of a dynamic
network, because it may be time-consuming to compute this
statistic over all pairs of attribute-values (m1,m2).

In addition, we determine the discriminatory attributes-
values which are based on content-similarity. The locally
discriminatory attribute values for cluster C and link type
k, denoted by La(k, C), are all the attributes m for which
the value of Qn(m, k, C)/f(m, C)2 is larger than the mean
value over all the attribute values. Similarly, we define
Pa(k) as the set of all attributes for which the value of
Pn(m, k)/h(m)2 is larger than the mean value over all
attribute values. Note that La(k, C) and Pa(k) define
attribute values for which similarity between nodes also
defines higher probability of a link.

2.4 Dynamic Structural Measures In addition to the lo-
cal content-based similarity measures, we also calculate the
pairwise structural similarity between nodes. It is important
to note that while pairwise similarity measures between at-
tributes are on the basis of content, the pairwise similarity
measures between nodes are on the basis of structure. The
pairwise structural similarity between nodes is computed as a
weighted function of the following quantities: (a) The decay-
weighted number of links between the two entities (b) The
decay-weighted similarity in neighbors between the two en-
tities.

In order to enable efficient and dynamic computation of
the link prediction process, we do not use more complex
structural measures such as path lengths between nodes.
Since the techniques discussed in this paper are designed
for the case of a dynamic network, it is important to use
temporal decay in the process of modeling the number
of links between the two entities. We did not use the
decay behavior in the content-based similarity because we
generally found the content-behavior across the network
to be much more stable with time as compared to the
structural behavior. Therefore, it is more critical to use the
decay-behavior in structural computations as compared to
the content computations. We define the decay-weighted
frequency of a link as follows:

DEFINITION 3. Let t be the current time, and t1 . . . tr be
the time stamps at which the link between a particular pair
of links (i, j) were received. Then, the decay weighted
frequency DF (i, j, k, t) is of link (i, j) of type k at time t

758 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

420 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

defined as
∑r

i=1 2
−λ·(t−ti). Here λ is the decay parameter.

The decay-based frequencies of the neighbors of each
node are dynamically tracked over time. We keep track
of only the neighbors of each node which have non-zero
frequency. We note that this can be a challenge, because
the decay based frequencies are continuously changing at
each tick, and we do not want to update all the frequencies
at a given time. However, the update can be performed in a
lazy fashion, since the decay-based frequencies for all nodes
decay at the same rate unless a new link is added. This refers
to the following observation:

OBSERVATION 1. If the link (i, j) is not received in the time
interval [t1, t2], then we have:

(2.1) DF (i, j, k, t2) = DF (i, j, k, t1) · 2−λ·(t2−t1)

Therefore, we make the multiplicative update for the decay
function only when a new link is added. Therefore, if t s was
the last time a link (i, j) of type k was received, and tc be the
current time at which a link is received, then, we update the
decay-based frequencies only at times ts and tc. At current
time tc, we first multiply the link frequency DF (i, j, k, ts)
by 2−λ·(tc−ts), and then add 1.

Thus, for each link type, each node has a vector of
decay frequencies which are dynamically maintained along
with it. The length of this vector is essentially the number
of neighbors of that node which are based on links of type
k. We define the structural similarity vector at a node as
follows:

DEFINITION 4. The structural similarity vector of a node i
at time tc for links of type k is the set NS(i, k) of neighbors
of that node together with the value of DF (i, j, k, tc) for
each j ∈ NS(i, k).

We further note that in many cases, the decay process
will ensure that some components of this vector will become
smaller and smaller over time. These correspond to those
nodes which may have been a neighbor at some point, but
have not been active neighbors for a while. Such components
do not contribute much to the computation process, but they
increase the space- and time-requirements. Therefore, it is
best to prune such components. Therefore, at the time of
updating a node, we check all the components of the vector
of that node, and remove all components which are less 0.1%
the magnitude of the average component in it. We note that
since such networks are typically sparse (and an even smaller
percentage of the links are active), the vector maintained at
each node is very small. Thus, for each node, we maintain a
list of the neighbor nodes with a non-zero component of the
decay frequency, and the actual value of the decay frequency.
Then, the structural similarity between a pair of nodes for
links of type k at time tc can be computed in the form of the
following two measures:

• The first measure is the direct structural similarity
DF (i, j, k, tc).

• The indirect structural similarity is the dot product of
the structural similarity vectors of i and j for links of
type k. This number is denoted by IDF (i, j, k, tc).
In other words, of QV (i, k, tc) and QV (j, k, tc) be the
vectors at i and j respectively, then the dot product is
given by:

(2.2) IDF (i, j, k, tc) = QV (i, k, tc) ·QV (j, k, tc)

2.5 Queries The statistics which are computed above can
be leveraged for an effective link prediction process. We
describe the techniques below:

Query 1: Determine the predictability-score of a link of
type k between a particular pair of nodes i and j.
We note that the predictability-score is a number which
helps in the relative rankings of linkages between nodes,
rather than serving as a true indicator of predictability values.
There are several factors which are combined in order to
compute the final predictability score. These factors are as
follows: (a) The content-based predictability (b) The content
similarity (c) The (direct and indirect) structural similarity.
In order to resolve this query, we first determine the sets
of attribute values V (i) and V (j) present at nodes i and
j. In addition, we determine the cluster memberships of
nodes i and j respectively. In the event that the cluster
memberships of nodes i and j are not the same, then we use
the global-predictability G(m1,m2, k) for each attribute-
value pair m1 ∈ V (i) and m2 ∈ V (j). The average of
the top t predictability values among the different pairs are
computed as a first step in order to create the predictability
score. On the other hand, if the nodes i and j belong to the
same cluster C, then we repeat the same computation with
the use of the local predictability values S(m1,m2, k, C).
This component defines the content based predictability and
is denoted by CP (i, j, k, tc) at the current time tc.

Furthermore, we include a contribution for the similarity
in attribute values between the node pairs. Specifically,
we add the cosine similarity between V (i) ∩ Pa(k) and
V (j) ∩ Pa(k) to the predictability score, or the cosine
similarity between V (i) ∩ La(k, C) and V (j) ∩ La(k, C) if
the cluster memberships of nodes i and j are the same. This
value is denoted by CS(i, j, k, tc) at the current time tc.

Finally, we also have the direct and indirect structural
similarity components. These structural similarity values are
denoted by DF (i, j, k, tc) and IDF (i, j, k, tc). Then, the
total link prediction score TPS(i, j, k, tc) is defined as a
weighted sum of these different components with the use of
balance parameters γ1 . . . γ4, and is defined as follows:

TP (I, j, k, tc) = γ1 · CP (i, j, k, tc) + γ2 · CS(i, j, k, tc) +

+γ3 ·DF (i, j, k, tc) + γ4 · IDF (i, j, k, tc)

759 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

421 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

The value of the balance parameters γ1 . . . γ4 is chosen in a
data driven manner by testing for different variations over a
small part of the training data, and then picking the optimum
value of the combination for the test data. A small grid of
values for the balance parameters γ1 . . . γ4 is used, and this
is used for the testing for the optimum combination over a
small part of the training data set.

Query 2: Determine the q most likely links of type k
emanating from node i.
In this case, the response to the query is in the form of a
ranked list of all the links emanating from node i. One
possible way to achieve a resolution to this query is to
repeat the query over all possible pairs of nodes emanating
from node k. This can however be time consuming, since
the number of possible nodes in the information network
can be very large. Therefore, a natural way to resolve the
query is to first identify a small structural locality of the
network based on the decay-based values DF (i, j, k, tc).
We first determine all nodes in the network which are within
a distance at most h, of node i with the use of only nodes
for which DF (i, j, k, tc) > ε, where ε is a small number
such as 0.1. This effectively uses only the active neighbors
of each node in the exploration process. The value of h is
typically a small number such as 2 or 3. Once these nodes
have been identified, we can repeat the process of query 1,
directly on this much smaller subset of nodes.

Query 3: Determine the q most likely links of type k.
The naive way of solving this problem would be to apply
query 1 over all pairs of nodes. However, this can be
extremely inefficient, since the number of pairs of nodes is
quadratically related to a potentially large number. As in
the previous case, we construct a network which is based
on edges (i, j) for which the value of DF (i, j, k, tc) is at
least ε. For each node i, we compute the aggregate value of
DF (i, j, k, tc) of all nodes j incident in it. We process the
nodes in decreasing order of this aggregate value, and repeat
the process of query 2 in order to determine the most likely
links. We dynamically keep track of the q most likely links.
The processing of each node may lead to some new links
which join the set of q most likely links. However, as more
and more nodes are processed, the updating of the set of most
likely links happens less frequently. We terminate, when an
update does not happen in at least t consecutive iterations.
We note that this is a heuristic termination point, but at large
values of t, such as 1% of the number of nodes, this provides
an effective solution.

3 Experimental evaluation

In this section, we will test the effectiveness and efficiency
of our proposed DYNALINK algorithm on a number of real
data sets. We will first give a description of the data sets,

Table 1: Data Description
Dataset # papers # authors # edges

DBLP 23,329 25,950 107,997
Genetics 11,463 41,868 159,746
Biochemistry 14,151 49,982 184,029

and discuss the experimental setup. Finally, we will present
the experimental results. As a baseline, we choose to use
a chance-constrained link prediction formulation (CBSOCP)
introduced in [8]. As we will see later, our experimental
studies sufficiently illustrate that our approach can effec-
tively predict future links in a dynamic scenario on both het-
erogeneous and homogeneous graphs. Furthermore, in spite
of the greater generality of the DYNALINK algorithm, it is
much more effective and efficient even in the homogeneous
scenarios which are designed for the CBSOCP method.

3.1 Data Sets The algorithms were tested on three real
data sets, which are similar with the ones used in the
baseline algorithm described in [8]. The main difference
is that a heterogeneous network structure was derived from
some of the data sets in order to test the effectiveness of
the DYNALINK algorithm in this scenario. Furthermore,
a dynamic environment was simulated to test the dynamic
aspects of our algorithm. The three data sets used are
described below.

The first data set is a heterogeneous co-authorship net-
work derived from the well-known DBLP data set 2. We
extract all the papers published in 20 conferences related
to database, data mining, information retrieval and machine
learning from 1996 to 2009.

The other two are the Genetics and Biochemistry data
sets, which are derived from the popular PubMed database 3.
In particular, the Genetics dataset includes a collection of
publication in 14 journals related to genetics and molecular
biology from 1996 to 2005, while the Biochemistry data set
contains articles published in 5 journals related to biochem-
istry also from 1996 to 2005. The size of three data sets is
summarized in Table 1.

3.2 Experimental Setup As discussed earlier, our pro-
posed dynamic approach focuses on predicting linkage in
dynamic information networks in a dynamic and temporal
way. In order to simulate this dynamic scenario, we divide
each data set into three parts as follows:

• The first part is for initialization which includes graph
partitioning and feature extraction.

• The second part acts as the dynamic part where we dy-

2http://dblp.uni-trier.de/
3http://www.ncbi.nlm.nih.gov/entrez

760 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

422 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

namically update the summary statistics and structural
similarities.

• The last part corresponds to the testing set.

For the case of the DBLP data set, the papers collected
between 1996 and 2003 are used for initialization, while
we treat all the later publications as new incoming objects
till 2008. The papers in 2009 are used to generate the test
set. For both the Genetics and Biochemistry data sets, the
initialization set includes all articles in the first 4 years (1996
to 1999), and then we continuously receive new publications
from 2000 to 2004. As in previous cases, the publication
collection of the last year is used for testing purposes.

Since our proposed algorithm is expected to work well
on both heterogenous and homogeneous cases, we generate
our input from both perspectives. In the graph derived from
the DBLP data set, there are two types of nodes: author
and conference. Accordingly, we generate two types of
links: author-author links and author-conference links. For
the other two data sets, we test them in the homogeneous
scenario. In other words, we generated only author nodes
and author-author links for them.

3.2.1 Feature Description and Parameter Setting Since
the data sets used in our experiment are derived from co-
authorship networks, we decided to use the words in the pa-
per titles as the attribute of each node. In general, an author
who has published many papers has a longer list of attributes.
The proposed algorithm has several parameters. In the graph
partitioning step, we divided the graph into r = 100 par-
titions. The same number of 100 partitions is consistently
maintained in the dynamic phase of the algorithm. The de-
cay parameter λ in the calculation of the decay weighted fre-
quency is set to be 1. We also tested several combinations of
the balance parameters γ1, γ2, γ3 and γ4. Then we pick the
combination of {0.2, 0.1, 0.5, 0.2} as this is one of the set-
tings that give us an effective value over different data sets.
The setting of the CBSOCP algorithm is exactly the same as
described in [8].

3.3 Accuracy Analysis In order to quantify the effective-
ness of our approach, we use the concepts of precision and
recall as evaluation method, and compare our result with
the chance-constrained based algorithm (CBSOCP) [8]. We
used an exactly similar testing methodology as discussed in
CBSOCP. Since each data set has a large number of nodes
and it is sometimes infeasible to test all combinations, the
CBSOCP method considered all the links in the testing graph
as positive examples and collect a sample of all the nega-
tive links as negative examples. Precisely, half of the nega-
tive links were chosen for testing purposes according to the
method discussed in [8]. In order to ensure consistent com-
parison between the two algorithms, we used the same set of

positive and negative examples in both cases.
To evaluate the effectiveness of our algorithm, we calcu-

late all test cases with the model from the training process,
and rank them in descending order of the prediction scores.
Note that in the case of the CBSOCP method, the ranking is
based on the margin of the classifiers. It is natural to choose
the top-k links of the list to be predicted as positive, and thus
precision and recall metrics can be calculated by varying the
value of k. Here, precision is defined as the percentage of
true positive links that are predicted correctly among the top-
k predictions and recall is defined as the percentage of true
positive links that are predicted correctly out of the complete
set of true positive links. Higher values of k lead to lower
precision but higher recall.

 0

 0.2

 0.4

 0.6

 0.8

 1

2000 4000 6000 8000 10000

PR
E

C
IS

IO
N

TOP K

DYNALINK
CBSOCP

Figure 2: Precision Plot (dblp author-author links)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2000 4000 6000 8000 10000

PR
E

C
IS

IO
N

TOP K

DYNALINK
CBSOCP

Figure 3: Precision Plot (dblp author-conference links)

Figures 2 and 3 depict the prediction precision of the two
different types of links in the heterogeneous graph derived
from DBLP data set over different values of k. The value of
k is illustrated on the X-axis, and the prediction precision is
illustrated on the Y -axis. The value of k on the X-axis varies
from 2,000 to 10,000. Note that the training procedure of our
DYNALINK algorithm is carried out as a single process for
both author-author links and author-conference links. With
the same model, we can predict different kinds of links even
though the precisions are shown separately. In contrast, since
the algorithm CBSOCP can only work on a particular type

761 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

423 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2000 4000 6000 8000 10000

R
E

C
A

L
L

TOP K

DYNALINK
CBSOCP

Figure 4: Recall Plot (dblp author-author links)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2000 4000 6000 8000 10000

R
E

C
A

L
L

TOP K

DYNALINK
CBSOCP

Figure 5: Recall Plot (dblp author-conference links)

of links, to make the comparison, we have to train the data
twice, each of which focuses on a particular type. In spite
of this, we can see that our dynamic link prediction scheme
is significantly superior to the baseline algorithm CBSOCP
in terms of precision for both types of links. For example,
when we set the value of k at 2,000, the precision for our
dynamic link prediction scheme is 73.8%, whereas that for
the CBSOCP method was 20.2%. As expected, the precision
drops off for both methods as k increases. However, the
DYNALINK algorithm continues to maintain reasonably high
precision even when the value of k increases.

The recall with increasing value of k of the DBLP
data set are illustrated in Figures 4, and 5. As in the
case of the precision plots, there are two recall plots for
the heterogeneous case of DBLP data set, each of which
contributes to a different type of links. The DYNALINK
method is superior to CBSOCP in terms of recall, which
means that our dynamic prediction approach can retrieve
more true positive links in the top-k predictions. This
phenomenon is more pronounced in the case of DBLP data
set shown in Figures 4 and 5. It is evident that the recall
curve of CBSOCP algorithm in these two figures is almost
flat, and therefore there is no additional advantage of picking
a larger value of k for increasing recall. On the contrary,
the corresponding recall curve of our method illustrates a a
rapidly increasing trend for larger values of k. For example,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2000 4000 6000 8000 10000

PR
E

C
IS

IO
N

TOP K

DYNALINK
CBSOCP

Figure 6: Precision Plot (Genetics)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2000 4000 6000 8000 10000

R
E

C
A

L
L

TOP K

DYNALINK
CBSOCP

Figure 7: Recall Plot (Genetics)

in the prediction of author-author links, the recall of the
DYNALINK method is 14.5% when k is set to 2, 000, and it
jumps to 49.8% when the first 10,000 predictions are chosen.

The precision plot with increasing value of k for the
Genetics data set is illustrated in Figure 6. As in previous
case, the DYNALINK scheme achieves much higher precision
than the CBSOCP algorithm. The gap between the two
curves in the precision plot is more obvious when the value
of k is relatively small. For example, when we aim at top
2,000 predictions, the precision of the DYNALINK method
is 66.5% while the CBSOCP algorithm has a precision
of only 25.1%. Figure 7 shows the corresponding recall
plot with increasing value of k for the Genetics data set.
In this case, the recall curve shows an increasing trend
for both DYNALINK and CBSOCP methods. However,
the DYNALINK scheme consistently reaches a much higher
recall value, and retrieves more true positive links over the
entire range of values of k.

The precision and recall plots of the Biochemistry data
set are illustrated in Figures 8 and 9 respectively. As can be
seen from the figures, the DYNALINK scheme is extremely
robust in the sense that it outperforms the CBSOCP algo-
rithm for every value of k in both precision and recall plots.
In the recall plot, even though the recall of the CBSOCP
algorithm increases with k, our DYNALINK scheme has a
much faster increasing trend. At the lower end, when k is

762 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

424 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

2000 4000 6000 8000 10000

PR
E

C
IS

IO
N

TOP K

DYNALINK
CBSOCP

Figure 8: Precision Plot (Biochemistry)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

2000 4000 6000 8000 10000

R
E

C
A

L
L

TOP K

DYNALINK
CBSOCP

Figure 9: Recall Plot (Biochemistry)

set to be 2,000, the recall of the DYNALINK method out-
performs the CBSOCP algorithm by a factor of about 1.1.
On the other hand, at the higher end, when we use the top
10,000 predictions, the DYNALINK method outperforms the
CBSOCP algorithm by a factor of 1.5.

3.4 Efficiency Analysis All experiments are done on a
Debian GNU/Linux server with two dual-core Xeon 3.0GHz
CPUs and 16GB main memory. The software was written in
C++.

Table 2: Computational Time
DYNALINK (sec) CBSOCP (sec)

DBLP 1,078 4,599
Genetics 785 12,448
Biochemistry 1,452 4,026

As in the case of the qualitative results, we used the CB-
SOCP method as the baseline approach. The computational
efficiency of both algorithms is illustrated in Table 2. Note
that the running time shown in the table includes all parts
of a complete training procedure. For the DYNALINK algo-
rithm, a complete procedure involves initialization, attribute
extraction, and model statistics maintenance. On the other
hand, the overall process of CBSOCP comprises feature cal-
culation, clustering and model training as well. We further
note that while the DYNALINK algorithm can be maintained

 0

 1000

 2000

 3000

 4000

 5000

 6000

2004 2005 2006 2007 2008

PR
O

C
E

SS
IN

G
 R

A
T

E
 (

#E
D

G
E

S/
SE

C
)

PROGRESSION OF STREAM

Figure 10: Efficiency on Data Stream (dblp)

 25000

 30000

 35000

 40000

 45000

2000 2001 2002 2003 2004

PR
O

C
E

SS
IN

G
 R

A
T

E
 (

#E
D

G
E

S/
SE

C
)

PROGRESSION OF STREAM

Figure 11: Efficiency on Data Stream (Genetics)

online in a dynamic way, this is not the case for the CBSOCP
algorithm. From the table, we can see that for all three test-
ing data sets, the DYNALINK algorithm runs faster than the
baseline CBSOCP. One major reason is the features used in
CBSOCP are more complicated and involve more calcula-
tion. In addition, the method in CBSOCP requires the im-
plementation of a maximum margin classifier. This is also
one of the reasons that CBSOCP cannot be implemented as
an online or real-time algorithm. On the other hand, the DY-
NALINK method is naturally designed to provide efficient
and real-time link inference.

To further demonstrate that our proposed algorithm is
highly efficient in terms of processing dynamic information
networks, we also test the online model maintenance effi-
ciency of the DYNALINK algorithm. For all three data sets, a
new object is a newly published paper and inherently forms a
small graph. Figures 10, 11 and 12 depict the processing rate
of our algorithm when the three data set continuously receive
new objects over time. The X-axis in the figures denoted the
publication time of the corresponding objects for temporal
identification. The processing rate is defined as the aver-
age number of new incoming edges that can be processed
every second. Every time when a new object arrives, the DY-
NALINK algorithm is expected to determine or re-assign the
cluster membership, update the node attributes, and main-
tain summary statistics as well as the structural similarity in-
formation. We also observe that the processing rate of the

763 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

425 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

 20000

 21000

 22000

 23000

 24000

 25000

 26000

 27000

 28000

2000 2001 2002 2003 2004

PR
O

C
E

SS
IN

G
 R

A
T

E
 (

#E
D

G
E

S/
SE

C
)

PROGRESSION OF STREAM

Figure 12: Efficiency on Data Stream (Biochemistry)

Genetics and Biochemistry data sets is relatively higher than
that of the DBLP data set. This is due to the fact that each
node in these data sets have fewer attributes than that in the
DBLP graph. In all cases, several thousand edges are pro-
cessed each second, and therefore the proposed algorithm is
very efficient, and can be effectively used for dynamic and
online scenarios.

4 Conclusions and Summary

In this paper, we presented an algorithm for dynamic link
inference in temporal and heterogeneous networks. The
algorithm is designed to be extremely efficient and is able to
construct link inference models for online and heterogeneous
networks which are continuously evolving over time. We
achieve this goal with the use of a dynamic clustering
approach in conjunction with content-based and structural
models. Our experimental results show that our approach
is able to achieve superior accuracy because of its more
sophisticated approach. At the same time our method is
extremely efficient, and can be made to work effectively
for the case of data streams. In addition to being an online
algorithm, it is also much more efficient than state-of-the-art
methods for link prediction.

Acknowledgements

Research of the first author was sponsored by the Army Re-
search Laboratory and was accomplished under Cooperative
Agreement Number W911NF-09-2-0053. The views and
conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of the Army Re-
search Laboratory or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion here on.
Research of the second and third authors was supported in
part by NSF through grants IIS 0905215, DBI-0960443,
CNS-1115234, IIS-0914934, OISE-1129076, and OIA-
0963278, and Google Mobile 2014 Program.

References

[1] L. Adamic and E. Adar, Friends and neighbors on the web,
Social Networks, 25, (2001), pp. 211–230.

[2] S. F. Adafre and M. Rijke, Discovering missing links in
Wikipedia, LinkKDD, (2005), pp. 90–97.

[3] C. Aggarwal. Social Network Data Analytics, Springer,
(2011).

[4] C. Aggarwal and H. Wang, Managing and Mining Graph
Data, Springer, (2010).

[5] M. Al-Hassan, V. Chaoji, S. Salem and M. J. Zaki, Link
prediction using supervised learning, SDM Workshop on
Link Analysis, Counter-terrorism and Security, (2006).

[6] M. Bilgic, G. Namata and L. Getoor, Combining collective
classification and link prediction, ICDM Workshop on Min-
ing Graphs and Complex Structures, (2007).

[7] J. Doppa, J. Yu, P. Tadepalli and L. Getoor, Link mining: A
survey, SIGKDD Explorations, (2005), pp. 3–12.

[8] J. R. Doppa, J. Yu, P. Tadepalli and L. Getoor, Chance
constrained programs for link prediction, NIPS Workshop
on Analyzing Networks and Learning with Graphs, (2009).

[9] L. Getoor, N. Friedman, D. Koller and B. Taskar, Learning
probabilistic models of relational structure, ICML, (2001),
pp. 170–177.

[10] L. Getoor, N. Friedman, D. Koller and B. Taskar, Learning
probabilistic models of link structure, Journal of Machine
Learning Research, 3, (2002), pp. 679–707.

[11] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller
and M. Wang, A framework for semantic link discovery over
relational data, CIKM, (2009), pp. 1027-1036.

[12] H. Kashima and N. Abe, A parameterized probabilistic model
of network evolution for supervised link prediction, ICDM,
(2006), pp. 340–349.

[13] J. Kunegis and A. Lommatzsch, Learning Spectral Graph
Transformations for Link Prediction, ICML, (2009), pp. 561–
568.

[14] J. Leskovec, Tutorial summary: Large social and information
networks: opportunities for ML, ICML, (2009), pp. 179.

[15] D. Liben-Nowell and J. Kleinberg, The link prediction
problem for social networks, CIKM, (2003), pp. 556–559.

[16] M. E. J. Newman, Clustering and preferential attachment in
growing networks, Physical Review Letters, 64, (2001).

[17] Y. Sun, R. Barber, M. Gupta, C. Aggarwal, J. Han. Co-author
Relationship Prediction in Heterogeneous Bibliographic Net-
works. ASONAM, (2011).

[18] Y. Sun, J. Han, C. Aggarwal, N. Chawla. When will it hap-
pen – Relationship Prediction in Heterogeneous Information
Networks, WSDM, (2012).

[19] B. Taskar, M. F. Wong, P. Abbeel and D. Koller, Link
prediction in relational data, NIPS, (2003).

[20] C. Wang, V. Satuluri and S. Parthasarathy, Local probabilistic
models for link prediction, ICDM, (2007), pp. 322–331.

[21] K. Yu, W. Chu, S. Yu, V. Tresp and Z. Xu, Stochastic
relational models for discriminative link prediction, NIPS,
(2006), pp. 1553–1560.

[22] J. Zhu, J. Hong and G. Hughesm, Using Markov models
for web site link prediction, ACM Hypertext & Hypermedia
Conf, (2002), pp. 169-170.

764 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

426 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

11
/2

8/
17

 to
 5

9.
64

.1
30

.4
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

